Slashing Insurance Vaults

Re? & Symbiotic

July 22, 2025

Abstract

Existing restaking protocols are designed such that
losses are shared uniformly by participants at a cer-
tain level, be it validator-by-validator or organised
into vault-like structures. We propose a model for
slashing insurance pools that organise participants
into tranches that absorb losses linearly and sequen-
tially. By pooling collateral from many delegators
and separating them into these tranches (e.g. a ju-
nior “equity” tranche and a senior “debt” tranche), a
vault can be modified to allow those in the more ju-
nior tranches to insure those in the more senior. We
propose a premium/coupon system to allow tranches
to compensate each other for the altered risk profile.

1 Background & Motivation

As restaking develops, risk profiles become more com-
plex and harder to analyse. Furthermore, delegators
of differing risk preferences require different risk pro-
files. Existing solutions can be improved:

e Centralized insurance (e.g. Aon/Marsh, and
other corporations’ policies) often cover only in-
stitutional clients. For instance, slashing insur-
ance offered by some centralized entities (via an
industry broker) pays out fully if a node goes
down, but is not accessible to ordinary users.
Aon similarly offers bespoke PoS insurance via
captive reinsurance networks. These programs
require off-chain contracts, KYC, and bulk pre-
miums, limiting adoption by retail or protocol-
native participants.

e On-chain mutual insurance pools capital
from members to underwrite policies, aiming for
trustless coverage. However, current on-chain in-
surance is small relative to the staking market.
DeFi insurance protocols currently cover only
a small fraction of the ecosystem’s total value.
Governance-based claims processes can intro-
duce delays, while requirements such as KYC

and bonding reduce accessibility and scalabil-
ity. In practice, many restaking protocols rely on
limited or temporary coverage. Some platforms,
for instance, have received short-term slashing
protection at no cost. Despite these efforts, most
staked assets across networks remain uninsured.

1.1 Insurance analogue

Corresponding institutions in traditional finance of-
fer useful parallels. Lloyd’s of London uses syndi-
cates to pool and underwrite risk: members form
a syndicate with an appetite and capital, spread-
ing exposure. In structured finance, tranching ap-
pears in mortgage-backed securities or collateralized
loan obligations—for example, senior and mezzanine
tranches absorb defaults in order of seniority, yet
only after Junior. In crypto, Nexus Mutual’s Ar-
mor “Shield” vaults adopt this approach, offering a
fully-collateralized safe tranche versus an undercollat-
eralized risk tranche. Likewise, credit default swaps
(CDS) in traditional finance let parties swap credit
risk via periodic premiums—conceptually similar to
paying a staking premium for slashing protection.
These analogues demonstrate that slicing insurance
risk into layers and enabling trading of protection is
a proven way to scale coverage.

2 Design Principles

The architecture must prioritize capital efficiency,
composability, resilience, and sound governance:

e Capital Efficiency: Pooling and tranching are
central. By diversifying risks across many val-
idators and participants, expected losses be-
come more predictable, allowing actuarial pric-
ing. Tranches (senior vs. junior) multiply
leverage: senior capital need only cover high-
percentile losses, since juniors absorb the first
layer of slashes.

e Composability: The system should integrate
with existing vaults and DeFi. Certain restak-

ing vaults already accept arbitrary ERC-20 col-
lateral and support custom delegation strategies.
An insurance vault would reuse this primitive,
letting any network or validator stake be insured
(subject to oracle coverage).

e Adversarial Resilience: Slashing insurance
must be robust to attacks or manipulation. The
slashing oracle (or verification logic) must be
tamper-proof. For insurance, similar checks (or
use of multiple oracles) will ensure only valid
slashes trigger payouts. The system should sup-
port configurable slashing flows (e.g. instant
vs. veto modes) so that operators can contest
dubious slashes if needed. Finally, having lay-
ered coverage inherently improves security: se-
nior participants know their cover is safe unless
an extreme event wipes out juniors first.

e Governance: A decentralized governance
framework must manage the insurance param-
eters. The DAO (or vault curator) should set
premiums, coverage limits, and even which net-
works/validators are insurable. Just as Nexus
Mutual members vote on claims, a dedicated in-
surance DAO might oversee oracles and claims
arbitration. Governance must also adapt to
changing conditions: e.g. raising premiums if
the pool nears depletion, or tuning tranche ratios
based on observed slashing frequency. Trans-
parent, on-chain rules (possibly with emergency
overrides) will help align all stakeholders.

3 System Architecture

The insurance functionality can be built on vault
primitives by adding an additional layer. Conceptu-
ally, users deposit collateral into this insurance vault
(into one or more tranches), pay certain premiums for
coverage, and receive coupons and staking rewards.

In our insurance design, we extend this with
tranche accounting and a slash oracle:

e Tranches: The vault’s accounting module is
partitioned into at least two pools (e.g. Junior
& Senior). Depositors choose which tranche to
join. The junior tranche backs itself (it may earn
higher yield or hold operator collateral) and ab-
sorbs initial losses. Only after juniors are ex-
hausted do senior deposits get slashed. Tech-
nically, when a slash event occurs, the Slasher
module first burns from the junior sub-account;
if that buffer runs out, additional burns hit the
senior account. This mirrors StakeWise V3’s ap-
proach: operators deposit extra collateral as a

junior loss-absorber, so stakers only lose after
that buffer is gone. By codifying tranche bal-
ances, the vault ensures loss order is enforced
on-chain.

e Slash Oracle & Trigger: To pay out insur-
ance, the vault must detect slashing on the in-
sured chain. Same-chain setups can be handled
with direct logic, but a cross-chain vault would
require oracles. One approach is a decentralized
oracle network or a set of trusted relayers re-
porting slash events (e.g. validator indexes and
amounts). When the vault’s Slash module re-
ceives a valid slash proof, it automatically trig-
gers the burn process. (Alternatively, the net-
work itself could post slashing events on-chain
via a bridge.) The oracle design is crucial: it
must be tamper-resistant and use on-chain data
(e.g. beacon chain proofs). Notably, both the
Symbiotic Relay and ReSquared’s CCM are ca-
pable of providing such a service.

e Payout and Liquidation Mechanics: Pay-
out and Liquidation Mechanics: After a slash,
the vault must “pay” the affected policyholders.
In practice, this means reducing the redeemable
balance of users in the junior tranche (and pos-
sibly senior). Symbiotic offers the possibility to
redistribute the stake associated with the junior
tranche to the senior tranche, within the same
vault and up to a certain limit.

e Premium Collection: The vault needs a fund-
ing source for its payouts. In this design, par-
ticipants pay into the vault as a fee for insured
stake. In either case, the vault’s reward distri-
bution logic must split yield between tranches
(senior gets low yield, junior gets high yield to
compensate for heightened risk).

In summary, an insurance vault repurposes the ex-
isting modular vault framework: users deposit a to-
ken into the vault and take a position in the insurance
layer, while the vault handles delegation and slash-
ing under the hood. By extending the existing vault
structure, the system can autonomously enforce an
on-chain insurance policy without alterations to the
underlying restaking protocol.

4 Economic Model

4.1 Definitions

We consider a set of validators V with cardinal-
ity N, which we might enumerate by validator in-
dex. Under this model, time is discrete, and a unit

of time is the period between application of premi- 0 Le|0,Cy)

ums and coupons. F; is the filtration generated by ERy =E L%SJ Le|[Cy,Cr+Cuy)
available information about V up to time ¢. For
oo . 1 Le[Cy+Cun,C]
our vault, we have delegators contributing capital
C(t) suppo?ting a validator set & C V.. In this —-F [L_ Cy Le([Cy,Cy+Cu)
case, we split the vault across tranches Junior, Mez- Cum
zanine, and Senior, with Junior absorbing capital "P[L € [Cy,C5 4 Cur)]
loss first, and Senior last. The tranches have bal-
’ +PLe|Cy+Cu,C
ances of (Cy(t),Cu(t),Cs(t)), and as such, we have C[c (G €]l
C(t) = Cy(t) + Cu(t) + Cs(t). Each is subject _ Lo (D) di — Cy
to a premium per unit capital (ps(t), pa(t), pc(t)), Cm Jo, Cm
and receives coupons of the net collected premi- c
ums in the proportions of (¢;(t), car(t), cs(t)), giving + / fo(l)dl
cr(t) +en(t) +cs(t) = 1. CotCu
4.2 Losses Under Slashing ERs =F 2 oo Lelo,Cy+Cum)
% Le [CL]—FCM,C]
We consider a slashing event of capital size L at time L-Cy;—Cy
t. We slightly abuse notation and refer to the bal- =E { Cs ‘L €[Cr+Cum, C]
ances of the tranches as Cj, Cps, and Cg. The re-
maining balances of each tranche after deductions are "P[L € [Cr+ Cu,]
1 (¢ C;+C
:7/ lfL(l)dl_u
(CJ — L, CM, Cs) Le [0, CJ) CS Cj+Cum CS
(0,Cy+Cy —L7CS) L e [CJ,CJ+CM)
(0,0,C = L) LeCs+Cum, (] 4.3 Premiums & Coupons
From this, we can derive the loss per unit capital of Given premium and coupon rates of (P, pm,ps) and
each tranche: (cg,cenm,cs) respectively, we can calculate the effec-
tive rates of reward per unit capital for each tranche.
CL Lelo,Cy) The total premium collected is Y p;C;, so the net
R — J ? . .
J 1 LelC),C] capital change for each tranche is
0 Len,Cy Ty =c; (3opiCi) ~psCy
Ry = L%C] Le[Cy,Cr+Cu)
M ’ =(c;j—1)p;Cy;+c Cn + cypsC
1 Le[Cy+ChC (cs psCy JPmMUMm JPsUs

Ly =cupsCr+ (em — D)pmCur + empsCs
Rs = {9;_CJ_CM Lel,Cr+Cu) s = cspsCy + cspuCur + (cs — 1)psCs
s Le [CJ"’CM,C}
and it follows that the rates of reward are
We can then compute the expected rate of loss of each
tranche (conditional on F;, and we presume that the
balances at time ¢ are known):

_ I,
PJ—CJ

Cu Cs
= (c;— 1)ps+ copyr—— + cips—

C C
£ Lel.C J J
ER; =E Cu 6[7 J) Cy Cs
1 LelCyC] PM = EMPI + (emr = Dpm + CMPS &
L C Cu
=E|—|Le€[0,C;)|P[Le[0,C = =7 M _
{ o [J)} [L €[0,Cy)] ps = csprg tespa gt (cs = 1)ps
+1-P[Le[0,Cy)] . . .
o, o, Note that > T'; = 0, i.e. this presentation of the vault
— L/ (afr()dl+1— 4 fr()di is, financially, a closed system. If we introduce a fee
CsJo 0 extracted from the premiums at rate f > 0, we have

instead

pr= 1~ fps— frs
pv = (1= flpm — fom
ps = (1—f)ps — fps

Note that since the net change in capital is
—f> > p:iC; < 0, we require at least one of the p; to
be negative.

4.3.1 Pricing

We now consider a method for setting premiums and
coupons for each of the tranches.

In essence, the vault allows Senior to pay Mez and
Junior for protection against losses, and for Mez to
pay Junior. Since depositors to the vault are by de-
fault inclined to take the yield-vs-slashing-risk bet,
premiums might price the excess risk incurred.

We define L* to be the loss incurred by the vault
during t € [thow, tnow + 1), and L is defined for each
tranche accordingly. The base rate of loss for the
vault over this period is]E%, and similarly, the ex-
pected base absolute loss for a tranche is]E% The
expected excess absolute loss incurred by a tranche is

L*C;

EA; =EL; — E
! C

which, given Fy, is

C,
ELf — —EL*
o C

Note that the sum of excess losses is indeed > ELf —
%EL* = 0. Furthermore, in the particular case
of C; = C, we require no premiums to be paid, and
revert to a standard restaking vault, as expected.

In order to obtain the ”fair’ﬂ distribution of premi-
ums, the expected excess risk must be compensated
for by premiums and coupons. This yields premiums
of

f%IEAi EA; <0
pi = ¢
0 otherwise

and coupons of
0 EAl <0

Zj:LEAjZU]EAJ

Cp = .
otherwise

With P = {j : EA; > 0} and N = {j : EA; < 0},
we see that Y, EA; = 3 \/(—EA;), and so it can
be seen that the net coupon paid by/to any tranche

INet zero benefit in expectation

results in an overall unchanged expected loss from the
case of the standard vault.

For participants in the system with linear utility,
these premiums and coupons provide no advantage
over the base vault. In practice, market participants
will have different utility curves, and so premiums
need to be modulated according to demand.

5 Risk Modelling

5.1 Distribution of f;-

In order to suitably price premiums and coupons, we
need a reasonable estimate for the distribution func-
tion fr«.

Suppose, reductively, that V is our universe of val-
idators, and that all of them are part of the vault
underlying the SIV. We also have A as our universe
of Networks, and s(v) the set of those that validator
v is securing.

Let Ly , be the loss of validator v from Network a
during the next time step. Then, trivially,

L=y > L.

veV a€s(v)

and it remains to estimate the joint distribution of the
Ly .. If we take the naive approach of assuming that
such events are independent, then we simply need the
individual distributions of the L7 ,, and we obtain the
distribution of L* as the convolution.

Notably, slashing events are rare (or non-existent
depending on the protocol). Here, we use a relatively
small sample size of all 482 events available on the
Ethereum consensus layer at the time of analysis.
Note that "Loss’ represents the largest drop in balance
of the validator rather than the full fined amount -
these quantities generally do not differ significantly,
since the vast majority of the fine applied is taken
during a single epoch. In Figure (1) we display the
pairplot of the dataset. A few features are notable:

e Slashing losses have discrete jumps over time,
which correspond with Ethereum protocol up-
grades and alterations of the base slashing
amount.

e The outliers on the loss chart are recent slashes
that have not had time to be fully processed, and
so may be excluded from consideration.

e There are a large number of validators that have
been slashed almost immediately after activa-
tion. Many of these are due to operator error

op ¢
.
.
.

300000

.
.
.
.
e
%

.
B .
.%o, - . %
Y X LI T
R v) o .
§ 200000 Bt et . 9"
& 5. g " PO,
e, 5 S e
100000 B % c. %
So o o o
& : R
o4 5 . @
400000 4
. oo
_ 300000 1 R
iy L
£ 200000 1 e".;"w.
g 200, o ® .
g F K Y
G 100000 . e

o

~100000 4

Dwen

‘ .
* e go°
BerTuesamse tow O sow o

@1e0810 © @B CIM HIO sE® o

we w@oszoen

Hﬂ

400000

300000 4

200000 4

Lifetime

100000 4

04

~100000

~100000 0 100000200000300000400000
Epoch

~100000 0 100000200000 300000 400000
Activation

100000 200000

Lifetime

300000

Figure 1: Pairplot of raw slashing data

during setup, one notable case being Bitcoin Su-

iss
We then factor in precise details of the most recent
version of the Ethereum consensus layer. Upon slash-
ing, validators immediately lose 0.00781256E|, where b
is their active balanceﬁ in Gwei. At the midpoint,
a 1ETH minimum fine is applied, in addition to an
anti-correlation penalty of % where d is the to-
tal value staked denominated in Gwei, and S is the
amount of ETH slashed between 2 eeksﬂ prior and 2
eeks hence the slashing event. The validator is also
exposed to 4 eeks of inactivity penalties, which are
equal to the rewards they would have received if they
were properly attesting, which, in this case, is gen-
erally 1—‘ilerwei per epoch. We omit consideration
of the inactivity leak for simplicity’s sake. Overall,
the loss incurred during a slashing event by a given
validator in Gwei is

131072
min <b, 10° 4+ max (1, 0.0078125 + 35 + 3107) b>
d Vd

Given this, we see that the source of randomness in

2https://x.com/BitcoinSuisseAG/status/
1724741985141993821

Shttps://ethereum.org/en/developers/docs/
consensus-mechanisms/pos/rewards-and-penalties/

4This is typically equivalent to 32ETH

Shttps://github.com/ethereum/annotated-spec/blob/
master/phase0/beacon-chain.md

%1 eek = 2,048 epochs

slashing quantities is S. From the data collected,
we observe little influence from this variable. If we
take a naive approach and presume little correlation
between slashing events (which should not be done
for a production model), we can approximate

Lv,Ethereum ~ 109P[Tv - tn0w|7—v 2 tnow]
for 7, the slashing time of validator v, i.e. it remains
to estimate the hazard function.

A full estimation of the hazard function, while valu-
able, falls outside the scope of this paper. Our aim
is to present a general framework within which such
time-dependent risk profiles can be incorporated as
needed. The specific form of the hazard function
is best informed by empirical data and application-
specific considerations, which we leave to future work.

6 Discussion & Future Work

e Future iterations of SIV could incorporate con-
trolled leverage or undercollateralized positions
within the vault structure. This would allow for
increased capital efficiency by enabling a higher
notional coverage of slashing risk than the vault’s
fully collateralized capital base would otherwise
permit. However, such extensions would neces-
sitate careful modeling of insolvency scenarios,
risk concentration, and tranche contagion, po-

https://x.com/BitcoinSuisseAG/status/1724741985141993821
https://x.com/BitcoinSuisseAG/status/1724741985141993821
https://ethereum.org/en/developers/docs/consensus-mechanisms/pos/rewards-and-penalties/
https://ethereum.org/en/developers/docs/consensus-mechanisms/pos/rewards-and-penalties/
https://github.com/ethereum/annotated-spec/blob/master/phase0/beacon-chain.md
https://github.com/ethereum/annotated-spec/blob/master/phase0/beacon-chain.md

tentially requiring external liquidity backstops or
real-time rebalancing mechanisms.

e The current premium model offers simplicity but
may be suboptimal under changing market or
risk conditions. Future work could explore alter-
nate pricing models, including bonding curves,
auction-based premium determination, or pric-
ing tied to cross-vault dynamics. These ap-
proaches could improve capital allocation effi-
ciency and attract risk-aligned capital, while in-
troducing new challenges in agent coordination
and pricing stability.

e A reinsurance vault could be constructed to ag-
gregate tail risks across multiple SIVs, acting as
a capital buffer for extreme or correlated slashing
events. Such a structure would function analo-
gously to reinsurance in traditional finance, of-
fering system-wide resilience and reducing the
likelihood of localized vault collapse. This would
require careful calibration of payout thresholds,
correlated risk modeling, and potentially a gov-
ernance layer to arbitrate cross-vault claims.

e Integrating liquid staking and restaking deriva-
tives (e.g., LSTs or LRTs) introduces a second
layer of abstraction between vault capital and
validator performance. While this could sig-
nificantly enhance yield and composability, it
also complicates slashing attribution and price
volatility modeling. Future work could formal-
ize an economic model that accommodates such
instruments.

e Expanding SIV beyond a single chain into a
multi-chain architecture would enable shared
risk pools across staking ecosystems. This
would be particularly relevant for modular
blockchains or interchain security setups. Such
architectures require novel approaches to cross-
chain messaging, validator overlap risk, time-
synchronized slashing observation, and poten-
tially trust-minimized oracles for event verifica-
tion.

7 Conclusion

Slashing Insurance Vaults (SIVs) provide a formal
mechanism for mutualizing validator risk via onchain
primitives. The proposed SIV design abstracts away
validator-specific failure risk into a parametric loss
distribution, enabling vaults to algorithmically un-
derwrite slashing events across heterogeneous opera-
tor sets. While the core model is modular, compris-

ing a staking layer, a premium-valuation engine, and
a payout mechanism, its efficacy hinges on accurate
correlation modeling, robust slashing detection, and
resistance to strategic manipulation. Extensions to
restaking environments, LRT-backed vaults, and in-
terchain deployments introduce substantial complex-
ity, particularly in trust assumptions, oracle design,
and time-synchronized event verification. Neverthe-
less, the SIV model offers a generalizable foundation
for programmable slashing insurance, and lays the
groundwork for future research in actuarially sound,
decentralized risk reallocation.

	Background & Motivation
	Insurance analogue

	Design Principles
	System Architecture
	Economic Model
	Definitions
	Losses Under Slashing
	Premiums & Coupons
	Pricing

	Risk Modelling
	Distribution of fL

	Discussion & Future Work
	Conclusion

